If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11x^2+12x=24
We move all terms to the left:
11x^2+12x-(24)=0
a = 11; b = 12; c = -24;
Δ = b2-4ac
Δ = 122-4·11·(-24)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-20\sqrt{3}}{2*11}=\frac{-12-20\sqrt{3}}{22} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+20\sqrt{3}}{2*11}=\frac{-12+20\sqrt{3}}{22} $
| 98/3=-7/2(n-10/3)-5/2n | | 2(3x+5)-4x=4(6x+3)/2-6 | | (y-14)(y+4)=y-14 | | 10x^2+11=4x | | 2t^2-30t=-52 | | F(-x)=3x^2-5x+4 | | s^2=6s-9 | | 2x+8=-6x+9 | | 48-3x=6 | | 7x+1/2=11 | | 2x^2=6-2x | | 12m^2-1=-3m | | (4x+1)²=0 | | F=7/6(n-29) | | -78=-19x+x^2 | | Y+(y-5)=75 | | 5x-2(x+3)=2(x+4) | | 59h=190-45h | | -3x(7-2x)=0 | | (D^5-D^3)y=0 | | 6n^2=20+6n | | 3y^2=16y | | 3/4x+2/5x=92 | | 6x+2=7-2x | | 6m^2=25m | | –2+5x=20-8x | | 0=-16x^2+43x+22 | | 4x+20=3x+6*7 | | 9(x-2)/3=3(x+8)/11 | | 4x+20=-3x+6*7 | | 6(x-2)/4=6(x+2)/12 | | 10(2y-2)-y=2(8y-8) |